Total Zero-Divisor Graphs of Idealizations with Respect to Prime Modules

D.Eswara Rao D.Bharathi

Abstract: Let R be a commutative ring with identity and let M be a prime R-module. let R(+)M be the idealization of ring R by the R-module M. we study the diameter and girth of the Total zero divisor graph of the ring R(+)M. In this paper we discuss the Total zero divisor graphs of idealization with respect to the prime modules. In this, we consider R be a commutative ring and let M be a P-prime R- module and P = (0:M) then we prove that (i) if P≠0 then (a,m) $\in Z(R(+)M)$ if and only if $a \in P \cup Z(R)$ (ii) if P = 0 then (a,m) $\in Z(R(+)M)$ if and only if a = 0 and $m \in M^*$. Using this result we prove that let $Z(\Gamma(R) \neq \phi, Z(R)$ is an ideal of R then $Z(\Gamma(R(+)M))$ is complete if and only if $Z(R) \subseteq (0:M)$. and also we prove that (i) if P = 0 then $Z(\Gamma(R(+)M))$ is complete, (ii) if P≠0 and Z(R) is not an ideal of R then diam($Z(\Gamma(R(+)M))) = 2$. Also we show that if |P|=0 then diam($Z(\Gamma(R(+)M))) = 1$, if $|P|\neq 0$ then diam($Z(\Gamma(R(+)M))) = 2$.

Index Terms: Zerodivisors, Total zerodivisor graph of idealization, commutative ring, connected graph, prime module.

1. Introduction:

Let R be a commutative Ring with non zero unity. The concept of the graph of the zero divisors of R was first introduced by Beck [1], where he was mainly interested in coloring. In his work all elements of the ring were vertices of the graph. The investigation of colorings of a commutative ring was then continued by D. D. Anderson and Naseer [2], In [3], D. F. Anderson and Livingston associate a graph, $\Gamma(R)$, to R with vertices $Z(R)^*=Z(R)\setminus\{0\}$, the set of non zero zero divisors of R, and for distinct $x, y \in Z(R) \setminus \{0\}$. The vertices x and y are adjacent if xy=0. In [5] D.F. Anderson and Badawi introduced the total graph of R, denoted by $T(\Gamma(R))$ as the graph with all elements of R as vertices, and for distinct x, $y \in R$ are adjacent if $x+y \in Z(R)$, they studied some graphical parameters of this graph such as diameter and girth.

Email: msceswar@gmail.com

Email: bharathikavali.yahoo.co.in

we study some results of Total graphs of idealizations with respect to prime module . In [5] D.F.Anderson, A.Badawi studied connectedness of Total graph of the idealization R(+)M and also investigate diameter and has proved some results on girth of Total graphs. Different aspects of the idealization are thoroughly investigated in [10],[11]. In this paper we also extend the study of D.F.Anderson, and A.Badawi with respect to prime module . In this section consider R be a commutative ring and let M be a P-prime Rmodule and P = (0:M) then we prove that (i) if $P \neq 0$ then $(a,m) \in Z(R(+)M)$ if and only if $a \in P \cup Z(R)$ (ii) if P = 0 then $(a,m) \in Z(R(+)M)$ if and only if a = 0and $m \in M^*$. Using this result we prove that let $Z(\Gamma(R) \neq \phi, Z(R) \text{ is an ideal of } R \text{ then } Z(\Gamma(R(+)M)) \text{ is }$ complete if and only if $Z(R) \subseteq (0:M)$. and also we prove that (i) if P = 0 then $Z(\Gamma(R(+)M))$ is complete, (ii) if $P\neq 0$ and Z(R) is not an ideal of R then diam($Z(\Gamma(R(+)M))) = 2$. Also we show that if |P|=0then diam($Z(\Gamma(R(+)M))) = 1$, if $|P| \neq 0$ then $diam(Z(\Gamma(R(+)M))) = 2.$

2. Preliminaries:

IJSER © 2015 http://www.ijser.org

Research Scholar, Department of Mathematics, S.V.University, Tirupathi.

Associate Professor, Department of Mathematics, S.V.University, Tirupathi.,

Complete Graph: A graph G in which every vertex is adjacent to every other vertex is called a complete graph. Complete graph is represented as K_n where n is the number of vertices in K_n .

Connected Graph: A graph G is said to be a connected graph if there is at least one path between every pair of vertices in G. otherwise G is said to be a disconnected graph.

Distance: Any two distinct vertices a and b in graph G, the distance between a and b, denoted by d(a,b) is the length of a shortest path connecting a and b, if such a path exist. Otherwise $d(G) = \infty$

Diameter of G : diam(G) = Sup{d(x,y) / x & y are distinct vertices in G}, where d(x,y) is the length of shortest path from x to y in G. if there is no such a path then $d(x,y) = \infty$.

The girth of G: The girth of G is denoted by gr(G) is length of shortest cycle in G. if G contains no cycles the $gr(G) = \infty$.

Path: A trail in which all the vertices are distinct is called a path.

Cycle: A path whose origin and terminus vertices are the same is called a cycle.

The idealization ofMoverR:The idealization ofM over R is thecommutativering formed from $R \times M$ by defining addition and

multiplication as follows

(i) $(r_1,m_1)+(r_2,m_2)=(r_1+r_2,m_1+m_2);$

(ii) $(r_1,m_1)(r_2,m_2)=(r_1r_2,r_1m_2+r_2m_1).$

The idealization of M in R, denoted by R(+)M, Wewill assume that neither the ring nor the module istrivial.Observethat

if $a \in Z(R)^*$, then $(a,m) \in Z(R(+)M)^*$ for all $m \in M$. To see

this, consider $b \in Z(R)^*$ with ab=0. If bM=0, then (a,m)(b,0)=0. If $bM\neq 0$, then there exists some $n \in M$ such that $bn\neq 0$. Hence, (a,m)(0,bn)=0.

3. Main Results:

Let M be a P-prime module over a Commutative ring R. $V_1 = \{(0, m) : m \in M^*\}, V_2 = \{(a, n) : a \in P^*, n \in M\}$ and $V_3 = \{(a, n) : a \in Z^*(R), n \in M\}$ are used in this section.

Theorem4.2.1 Let R be a commutative ring and let M be a P-prime R-module. Then

(i) If $P \neq 0$, then $(a, m) \in Z(R(+)M)$ if and only if $a \in P \cup Z(R)$.

(ii) If P = 0, then $(a, m) \in Z(R(+)M)$ if and only if a = 0 and $m \in M^*$.

Proof. (i) Let $(a, m) \in Z(R(+)M)$). We may assume that $a \neq 0$.

There exist a non-zero element (b, n) of R(+)M such that (a, m)(b, n)=(ab, an + bm) =(0,0).

If b = 0, then $a \in (0 : n) = P$; if $b \neq 0$, then $a \in Z(R)$.

Conversely, assume that $(a, m) \in R(+)M$ with $a \in P \cup Z(R)$.

If $a \in Z(R)$, then ab = 0

for some non-zero element $b \in \mathbb{R}$. If $b \in \mathbb{P}$, then (a, m)(b,0) = (0,0). If $b \notin \mathbb{P}$,

then there is an element x of M such that $bx \neq 0$. Then (a, m)(0, bx) = (0, 0).

Finally, if $a \in P$, then there exists a non-zero element y of M such that ay = 0.

Therefore, (a, m)(0, y) = (0,0), and so the case.

(ii) Let (a, m) $\in Z(R(+)M)$). We may assume that a \neq 0.

There exist a non-zero element (b, n) of R(+)M such that ab = 0 and an+bm = 0.

Since M is a 0-prime R-module, we must have R is an integral domain;

hence if $a \neq 0$, then b = 0, $n \neq 0$ and $a \in (0 : n) = 0$ which is a contradiction.

Therefore, a = 0 and $m \neq 0$ since $(a, m) \neq 0$.

The other implication is clear. ♦

Theorem4.2.2 Let R be a commutative ring and let M be a P-prime R-module. Then

(i) If P = 0, then $Z(R(+)M)^* = V_1$.

(ii) If $P \neq 0$ and $Z(R)^* \neq \emptyset$, then $Z(R(+)M)^* = V_1 \cup V_2 \cup V_3$.

(iii) If $P \neq 0$ and $Z(R)^* = \emptyset$, then $Z(R(+)M)^* = V_1 \cup V_2$.

Proof. This follows from theorem 4.2.1.

Theorem 4.2.3 Let M be a prime module over a commutative ring R and let $Z(\Gamma(R)) \neq \emptyset$. Then $Z(\Gamma(R(+)M))$ is complete if and only if $Z(R) \subseteq (0$:M).

Proof. Since $Z(\Gamma(\mathbb{R})) \neq \emptyset$, we must have $(0 : \mathbb{M}) = \mathbb{P} \neq 0$.

Assume $Z(\Gamma(R(+)M))$ is complete.

Let $r \in Z(R)$, $0 \neq m \in M$. We may assume that $r \neq 0$. Then

Theorem 4.2.2 gives $(0, m), (r, 0) \in Z(R(+)M)^*$

IJSER © 2015 http://www.ijser.org

29

 $(0, m)+(r,0) \in Z(R(+)M)^* \Rightarrow (r,m) \in$ Hence $Z(R(+)M)^*$ [by the hyp.] Then for some $(b,n) \in \mathbb{R}(+)M$ we have (r,m). (b,n) = $0 \Rightarrow (rb, rn+bm) = 0$ ⇒ rb = 0 and rn+bm = 0If b $= 0 \Rightarrow rn = 0 \Rightarrow r \in (0:M)$ ⇒ $Z(R) \subseteq (0:M)$ If $b \neq 0 \Rightarrow$ and rb = 0, b is a zero divisor, i.e. $b \in$ Z(R). For some $m \in M \subset R$ we have bm = 0 this gives rn $= 0 \Rightarrow r \in (0:M) \Rightarrow$ $Z(R) \subseteq (0:M).$ Conversely assume that $Z(R) \subset (0:M) = P$. Let $(a,m)_{\ell}(b,n) \in Z(R(+)M)^*$ and (a,m)+(b,n) =(a+b,m+n) For some $(c,l) \in \mathbb{R}(+)M$ we have (a+b,m+n). (c,l) =(ac+bc, al+bl+mc+nc) If a = b = c = 0 then clearly (a+b,m+n). (c,l) = 0. If c = 0 and $a, b \in Z(R)^* \subseteq P$ then al = 0, bl = 0. hence (a+b,m+n).(c,l) = 0.If $a,b,c \in Z(\mathbb{R})^* \subseteq \mathbb{P}$ then ac = 0,bc = 0,and al = 0,bl =0,mc = 0, nc = 0 then (a+b,m+n).(c,l) = 0.So for all cases $(a,m)+(b,n) = (a+b,m+n) \in$ $Z(R(+)M)^*$ Thus $Z(\Gamma(R(+)M))$ complete. ٠ Note that if M is a prime R-module, then any nonzero sub module of M is prime. Therefore, by

Theorem 4.2.3, we have the following corollary: **Corollary4. 2.4** Let R be a commutative ring, M a prime R-module, N a nonzero sub module of M and $Z(\Gamma(R)) \neq \emptyset$. Then $Z(\Gamma(R(+)M))$ is complete if

and only if $Z(\Gamma(R(+)N))$ is complete. **Theorem4.2.5** : Let M be a P-prime module over a commutative ring R and let $Z(\Gamma(R)) = \emptyset$. Then:

commutative ring K and let $Z(I(K)) = \emptyset$. Then:

(i) If P = 0, then $Z(\Gamma(R(+)M))$ is complete.

(ii) If $P \neq 0$, then diam $(Z((\Gamma(R(+)M))) = 2$.

Proof : (i) Since $Z(\Gamma(R)) = \emptyset$, we must have R is an integral domain. If P = 0,

then Theorem 4.2.2 gives $Z(R(+)M)^* = V_1$, so clearly it is complete.

(ii) If $P \neq 0$, and Z(R) is not an ideal of R then Theorem 4.2.2 gives $Z(R(+)M)^* = V_1 \cup V_2$.

Let $z_1=(a, m)$, $z_2=(b, n) \in Z(R(+)M)^*$. If $z_1, z_2 \in V_1$, then $z_1 + z_2 \in Z(R(+)M)^*$.

If $z_1 \in V_2$ and $z_2 \in V_1$, then $a \in P$ and b = 0; $z_1 + z_2 =$ (a+b,m+n) for some $(c,l) \in R(+)M$ we have (a+b,m+n). (c,l) = (ac+bc , al+bl+mc+nc) if c = 0 then (a+b,m+n). (c,l) = 0 so $z_1 + z_2 =$ $(a+b,m+n) \in Z(R(+)M)^*$. If $c \neq 0$ and $a \in Z(R)$ then ac = 0 for some $c \in P \subseteq R$ Since $c \in P$ then mc+nc = 0 so $z_1 + z_2 = (a+b,m+n) \in$ $Z(R(+)M)^{*}$. If $c \notin P$ and let m = -n then (a+b,m+n). (c,l) = (ac, l)mc+nc) = (0,0) then $z_1 + z_2 \in Z(R(+)M)^*$. Similarly, if $z_1 \in V_1$ and $z_2 \in V_2$, then $z_1 + z_2 \in$ $Z(R(+)M)^{*}$. Suppose that $z_1, z_2 \in V_2$ and let $0 \neq x \in M$ then $a, b \in P$ = (0:M)Hence $z_1 - (0, x) - z_2$ is a path. Since $(a,m) + (0,x) \in Z(R(+)M)^*$ and $(0,x) + (b,n) \in$ $Z(R(+)M)^{*}$. Because (a,m) + (0,x) = (a,m+x) for $(c,l) \in R(+)M$ (a,m+x). (c,l) = (ac, al+mc+xc)If c = 0, $a \in P \Rightarrow (a, m+x)$. (c, l) = 0If $c \neq 0, c \in P \subseteq R, a \in P \Rightarrow mc + xc = 0, ac = 0 \Rightarrow (a, m + x)$. (c,l) = 0If $c \notin P$ and let m = -x then $mc+xc = 0 \Rightarrow$ (a,m+x).(c,l) = 0Hence $(a,m) + (0,x) \in Z(R(+)M)^*$ and similarly (0,x) $+(b,n) \in Z(R(+)M)^*$. So $z_1 - (0,x) - z_2$ is a path in $Z((\Gamma(R(+)M)))$. Hence diam $(Z((\Gamma(R(+)M))) = 2. \blacklozenge$ Theorem 4.2.6 Let M be a P-prime module over a commutative ring R and let $Z(\Gamma(R)) = \emptyset$. Then diam $(Z((\Gamma(R(+)M)))) \leq 2.$ Proof. This follows from theorem 4.2.5. Example 4.2.7 (i) Since Z is a 0-prime Z-module, we must have $Z(\Gamma(R(+)M))$ is complete by Theorem4. 2.5 (i). (ii) Let $M = Z_3$ denote the ring of integers modulo 3. Then M is a 3Z-prime Z-module. Then diam $Z((\Gamma(R(+)M))) = 2$ by Theorem 4.2.5 (ii) Lemma 4.2.8 Let R be a commutative ring with identity and $M \cong Z_3$ a P-prime R-module. Then: (i) $P \neq 0$ if and only if |R| > 3. (ii) P = 0 if and only if |R| = 3. Proof. (i) Since $P \neq 0$ and it is prime, we must have $|P| \ge 3$; hence $|R| \ge 4$. Conversely, assume that $|R| \ge 4$, so by [2, p. 237], there always exists a

non-zero r \in R such that rZ₃= 0. Therefore, P \neq 0.

IJSER © 2015 http://www.ijser.org (ii) is clear.

Theorem 4.2.9. Let R be a commutative ring and let M be a P-Prime module

(i) $|P| = 0 [P = \emptyset]$ then diam $Z((\Gamma(R(+)M))) = 1$.

(ii) $|P| \ge 1$ then diam $Z((\Gamma(R(+)M))) = 2$.

Proof: (i) if |P| = 0 $[P = \emptyset]$

i.e. there is no element $r \in R^*$ such that rm = 0 for any $m \in M^*$.

then theorem 4.2.2 gives $Z(R(+)M)^* = V_1$

then for any two elements in V_1 are distance 1.

diam $Z((\Gamma(R(+)M))) = 1$.

(ii) if $|P| \ge 1$

i.e. there exist at least one element $m \in M^*$ such that rm = 0 for any $r \in R$.

then $Z(R(+)M)^* = V_1 \cup V_2 = \{(0,m): m \in M^* \} \cup \{(r,m), \ldots : m \in M^* \}$

then any two elements of V_2 are not adjacent. But $(r,n) + (0,m) \in Z(R(+)M)^*$ and $(0,m) + (0,n) \in Z(R(+)M)^*$. Then (r,n) - (0,m)-(0,n), $m \neq n$ and $m,n \in M^*$ is a path in $Z((\Gamma(R(+)M)))$.

Then diam $Z((\Gamma(R(+)M))) = 2$.

4. References:

[1]. I.Beck, Coloring of commutative rings, J.Algebra 116(1988),208-226.

- [2]. D.D.Anderson, M.Naseer, Becks coloring of a commutative ring, J.Algebra, 159(1993), 500-514.
- [3].D.F. Anderson, P.S.Livingston, The zero divisor graph of a commutative ring J.Algebra, 217(1999), 434-447.
- [4]. D.F. Anderson, A.Frazier, A.Lauve, P.Livingston ,The zero divisor graph of a commutative ring II , Lecture Notes in Pure and Appl.Math.,vol.220,Dekker,New York,2001,61-72.
- [5]. D.F. Anderson, A.Badawi, The total graph of commutative ring, J.Algebra, 320, 2706-2719, (2008)

- [6]. F.R.DEMEYER,T.McKenzie and K.Schneider,the zero divisor graph of a commutative semigroup. Semigroup Forum,vol.65(2002),206-214.
- [7]. D.F. Anderson, A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008) 3073–3092.
- [8]. D.F. Anderson, R. Levy, J. Shapiro, Zerodivisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (2003) 221–241.
- [9] D.F. Anderson, S.B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210 (2007) 543–550.
- [10] M. Axtel, J. Coykendall, J. Stickles, Zerodivisor graphs of polynomials and power series over commutative rings, Comm. Algebra 33 (2005) 2043–2050.
- [11] M. Axtel, J. Stickles, Zero-divisor graphs of idealizations, J. Pure Appl. Algebra 204 (2006) 235–243.

[12] I. Kaplansky, Commutative Rings, rev. ed., University of Chicago Press, Chicago, 1974.

[13] J.D. LaGrange, Complemented zero-divisor graphs and Boolean rings, J. Algebra 315 (2007) 600–611.

[14] T.G. Lucas, The diameter of a zero-divisor graph, J. Algebra 301 (2006) 174–193.

[15] S. Akbari, A. Mohammadian, On the zerodivisor graph of a commutative ring, J. Algebra 274 (2004) 847-855.

[16] S.E. Atani. and F.Farzalipour., Zero Divisor Graphs of idealizations with respect to modules". Chiang Mai J.Sci.36(1),2009,5-8.