Total Zero-Divisor Graphs of Idealizations with Respect to Prime Modules

D.Eswara Rao

D.Bharathi

Abstract

Let R be a commutative ring with identity and let M be a prime R-module. let $R(+) M$ be the idealization of ring R by the R -module M . we study the diameter and girth of the Total zero divisor graph of the ring $R(+) M$. In this paper we discuss the Total zero divisor graphs of idealization with respect to the prime modules. In this, we consider R be a commutative ring and let M be a P-prime R - module and $P=(0: M)$ then we prove that (i) if $P \neq 0$ then $(a, m) \in Z(R(+) M$) if and only if $a \in P \cup Z(R)$ (ii) if $P=0$ then $(a, m) \in Z(R(+) M)$ if and only if $a=0$ and $m \in M^{*}$. Using this result we prove that let $Z(\Gamma(R) \neq \varphi, Z(R)$ is an ideal of R then $Z(\Gamma(R(+) M))$ is complete if and only if $Z(R) \subseteq(0: M)$. and also we prove that (i) if $P=0$ then $Z(\Gamma(R(+) M)$) is complete, (ii) if $P \neq 0$ and $Z(R)$ is not an ideal of R then $\operatorname{diam}(Z(\Gamma(R(+) M)))=2$. Also we show that if $|P|=0$ then $\operatorname{diam}(Z(\Gamma(R(+) M)))=1$, if $|P| \neq 0$ then $\operatorname{diam}(Z(\Gamma(R(+) M)))=2$.

Index Terms: Zerodivisors, Total zerodivisor graph of idealization, commutative ring, connected graph, prime module.

1. Introduction:

Let R be a commutative Ring with non zero unity. The concept of the graph of the zero divisors of R was first introduced by Beck [1], where he was mainly interested in coloring. In his work all elements of the ring were vertices of the graph. The investigation of colorings of a commutative ring was then continued by D. D.
Anderson and Naseer [2], In [3], D. F. Anderson and Livingston associate a graph, $\Gamma(\mathrm{R})$, to R with vertices $Z(R)^{*}=Z(R) \backslash\{0\}$, the set of non zero zero divisors of R, and for distinct $x, y \in Z(R) \backslash\{0\}$. The vertices x and y are adjacent if $x y=0$. In [5] D.F. Anderson and Badawi introduced the total graph of R, denoted by $T(\Gamma(R))$ as the graph with all elements of R as vertices, and for distinct $x, y \in R$ are adjacent if $x+y \in Z(R)$, they studied some graphical parameters of this graph such as diameter and girth.

[^0]we study some results of Total graphs of idealizations with respect to prime module. In [5] D.F.Anderson, A.Badawi studied connectedness of Total graph of the idealization $\mathrm{R}(+) \mathrm{M}$ and also investigate diameter and has proved some results on girth of Total graphs. Different aspects of the idealization are thoroughly investigated in [10],[11]. In this paper we also extend the study of D.F.Anderson, and A.Badawi with respect to prime module. In this section consider R be a commutative ring and let M be a P-prime R module and $\mathrm{P}=(0: \mathrm{M})$ then we prove that (i) if $\mathrm{P} \neq 0$ then $(a, m) \in Z(R(+) M)$ if and only if $a \in P \cup Z(R)$ (ii) if $P=0$ then $(a, m) \in Z(R(+) M)$ if and only if $a=0$ and $m \in M^{*}$. Using this result we prove that let $Z(\Gamma(R) \neq \phi, Z(R)$ is an ideal of R then $Z(\Gamma(R(+) M))$ is complete if and only if $Z(R) \subseteq(0: M)$. and also we prove that (i) if $\mathrm{P}=0$ then $\mathrm{Z}(\Gamma(\mathrm{R}(+) \mathrm{M}))$ is complete, (ii) if $\mathrm{P} \neq 0$ and $\mathrm{Z}(\mathrm{R})$ is not an ideal of R then $\operatorname{diam}(Z(\Gamma(R(+) M)))=2$. Also we show that if $|P|=0$ then $\operatorname{diam}(Z(\Gamma(R(+) M)))=1$,if $|P| \neq 0 \quad$ then $\operatorname{diam}(Z(\Gamma(R(+) M)))=2$.

2. Preliminaries:

Complete Graph: A graph G in which every vertex is adjacent to every other vertex is called a complete graph. Complete graph is represented as K_{n} where n is the number of vertices in K_{n}.
Connected Graph: A graph G is said to be a connected graph if there is at least one path between every pair of vertices in G. otherwise G is said to be a disconnected graph.
Distance: Any two distinct vertices a and b in graph G, the distance between a and b, denoted by $d(a, b)$ is the length of a shortest path connecting a and b,if such a path exist. Otherwise $d(G)=\infty$
Diameter of $G: \operatorname{diam}(G)=\operatorname{Sup}\{d(x, y) / x \& y$ are distinct vertices in $G\}$, where $d(x, y)$ is the length of shortest path from x to y in G. if there is no such a path then $d(x, y)=\infty$.
The girth of G : The girth of G is denoted by $\operatorname{gr}(G)$ is length of shortest cycle in G. if G contains no cycles the $\operatorname{gr}(\mathrm{G})=\infty$.
Path: A trail in which all the vertices are distinct is called a path.
Cycle: A path whose origin and terminus vertices are the same is called a cycle.
The idealization of $\quad \mathbf{M}$ over \mathbf{R}
The idealization of M over R is the commutative ring formed from $\mathrm{R} \times \mathrm{M}$ by defining addition and multiplication as follows
(i) $\left(r_{1}, m_{1}\right)+\left(r_{2}, m_{2}\right)=\left(r_{1}+r_{2}, m_{1}+m_{2}\right)$;
(ii) $\quad\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, r_{1} m_{2}+r_{2} m_{1}\right)$.

The idealization of M in R, denoted by $R(+) M$, We will assume that neither the ring nor the module is trivial. Observe that if $a \in Z(R)^{*}$, then $(a, m) \in Z(R(+) M)^{*}$ for all $m \in M$. To see this, consider $b \in Z(R)^{*}$ with $a b=0$.
If $b M=0$, then $(a, m)(b, 0)=0$. If $b M \neq 0$, then there exists some $n \in M$ such that $b n \neq 0$. Hence, $(a, m)(0, b n)=0$.

3. Main Results:

Let M be a P-prime module over a Commutative ring R. $\mathrm{V}_{1}=\left\{(0, \mathrm{~m}): \mathrm{m} \in \mathrm{M}^{*}\right\}, \mathrm{V}_{2}=$ $\left\{(\mathrm{a}, \mathrm{n}): \mathrm{a} \in \mathrm{P}^{*}, \mathrm{n} \in \mathrm{M}\right\}$ and $\mathrm{V}_{3}=\left\{(\mathrm{a}, \mathrm{n}): \mathrm{a} \in \mathrm{Z}^{*}(\mathrm{R}), \mathrm{n}\right.$ $\in M\}$ are used in this section.
Theorem4.2.1 Let R be a commutative ring and let M be a P-prime R-module. Then
(i) If $P \neq 0$, then $(a, m) \in Z(R(+) M)$ if and only if $a \in$ $\mathrm{P} \cup \mathrm{Z}(\mathrm{R})$.
(ii) If $\mathrm{P}=0$, then $(\mathrm{a}, \mathrm{m}) \in \mathrm{Z}(\mathrm{R}(+) \mathrm{M})$ if and only if $\mathrm{a}=$ 0 and $m \in \mathrm{M}^{*}$.
Proof. (i) Let $(a, m) \in Z(R(+) M))$. We may assume that $\mathrm{a} \neq 0$.
There exist a non-zero element (b, n) of $R(+) M$ such that $\quad(a, m)(b, n)=(a b, a n+$ $\mathrm{bm})=(0,0)$.
If $b=0$, then $a \in(0: n)=P$; if $b \neq 0$, then $a \in Z(R)$.
Conversely, assume that $(a, m) \in R(+) M$ with $a \in P$ UZ(R).
If $a \in Z(R)$, then $a b=0$
for some non-zero element $b \in R$. If $b \in P$, then (a, $m)(b, 0)=(0,0)$. If $b \notin P$,
then there is an element x of M such that $b x \neq 0$. Then $(a, m)(0, b x)=(0,0)$.
Finally, if a $\in P$, then there exists a non-zero element y of M such that ay $=0$.
Therefore, $(a, m)(0, y)=(0,0)$, and so the case.
(ii) Let $(a, m) \in Z(R(+) M)$. We may assume that $a \neq$ 0 .

There exist a non-zero element (b, n) of $R(+) M$ such that $\mathrm{ab}=0$ and $\mathrm{an}+\mathrm{bm}=0$.
Since M is a 0 -prime R-module, we must have R is an integral domain;
hence if $a \neq 0$, then $b=0, n \neq 0$ and $a \in(0: n)=0$ which is a contradiction.
Therefore, $\mathrm{a}=0$ and $\mathrm{m} \neq 0$ since $(\mathrm{a}, \mathrm{m}) \neq 0$.
The other implication is clear. -
Theorem4.2.2 Let R be a commutative ring and let M be a P-prime R-module. Then
(i) If $P=0$, then $Z(R(+) M)^{*}=V_{1}$.
(ii) If $\mathrm{P} \neq 0$ and $\mathrm{Z}(\mathrm{R})^{*} \neq \emptyset$, then $\mathrm{Z}(\mathrm{R}(+) \mathrm{M})^{*}=$ $\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3}$.
(iii) If $P \neq 0$ and $Z(R)^{*}=\emptyset$, then $Z(R(+) M)^{*}=V_{1} \cup V_{2}$.

Proof. This follows from theorem 4.2.1.
Theorem 4.2.3 Let M be a prime module over a commutative ring R and let $Z(\Gamma(R)) \neq \emptyset$. Then $\mathrm{Z}(\Gamma(\mathrm{R}(+) \mathrm{M})) \quad$ is complete if and only if $\mathrm{Z}(\mathrm{R}) \subseteq(0$:M).
Proof. Since $Z(\Gamma(R)) \neq \emptyset$, we must have $(0: M)=P \neq$ 0.

Assume $\mathrm{Z}(\Gamma(\mathrm{R}(+) \mathrm{M}))$ is complete.
Let $r \in Z(R), 0 \neq m \in M$. We may assume that $r \neq 0$. Then
Theorem 4.2.2 gives $(0, m),(r, 0) \in Z(R(+) M)^{*}$

Hence $\quad(0, m)+(r, 0) \in Z(R(+) M)^{*} \Rightarrow(r, m) \in$ $\mathrm{Z}(\mathrm{R}(+) \mathrm{M})^{*}$ [by the hyp.]
Then for some $(b, n) \in R(+) M$ we have $(r, m) .(b, n)=$ $0 \Rightarrow(\mathrm{rb}, \mathrm{rn}+\mathrm{bm})=0$
$\mathrm{rb}=0$ and $\mathrm{rn}+\mathrm{bm}=0$
$=0 \Rightarrow \mathrm{rn}=0 \Rightarrow \mathrm{r} \in(0: \mathrm{M})$
If b
\Rightarrow
$Z(R) \subseteq(0: M)$
If $b \neq 0 \Rightarrow$ and $r b=0, b$ is a zero divisor, i.e. $b \in$ $\mathrm{Z}(\mathrm{R})$.
For some $m \in M \subseteq R$ we have $b m=0$ this gives $r n$ $=0 \Rightarrow r \in(0: M) \Rightarrow \quad Z(R) \subseteq(0: M)$.
Conversely assume that $Z(R) \subseteq(0: M)=P$.
Let $(\mathrm{a}, \mathrm{m}),(\mathrm{b}, \mathrm{n}) \in \mathrm{Z}(\mathrm{R}(+) \mathrm{M})^{*}$ and $(\mathrm{a}, \mathrm{m})+(\mathrm{b}, \mathrm{n})=$ ($a+b, m+n$)
For some $(c, l) \in R(+) M$ we have $(a+b, m+n)$. $(c, l)=$ (ac+bc , al $+\mathrm{bl}+\mathrm{mc}+\mathrm{nc}$)
If $a=b=c=0$ then clearly $(a+b, m+n) .(c, l)=0$.
If $c=0$ and $a, b \in Z(R)^{*} \subseteq P$ then $\mathrm{al}=0, b l=0$. hence $(a+b, m+n) .(c, l)=0$.
If $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}(\mathrm{R})^{*} \subseteq \mathrm{P}$ then $\mathrm{ac}=0, \mathrm{bc}=0$, and $\mathrm{al}=0, \mathrm{bl}=$ $0, \mathrm{mc}=0, \mathrm{nc}=0$ then
$(a+b, m+n) .(c, l)=0$.

$\stackrel{\rightharpoonup}{*}$
Note that if M is a prime R-module, then any nonzero sub module of M is prime. Therefore, by Theorem 4.2.3, we have the following corollary:
Corollary4. 2.4 Let R be a commutative ring, M a prime R-module, N a nonzero sub module of M and $Z(\Gamma(\mathrm{R})) \neq \emptyset$. Then $\mathrm{Z}(\Gamma(\mathrm{R}(+) \mathrm{M}))$ is complete if and only if $Z(\Gamma(R(+) N))$ is complete.
Theorem4.2.5 : Let M be a P-prime module over a commutative ring R and let $\mathrm{Z}(\Gamma(\mathrm{R}))=\emptyset$. Then:
(i) If $\mathrm{P}=0$, then $\mathrm{Z}(\Gamma(\mathrm{R}(+) \mathrm{M}))$ is complete.
(ii) If $\mathrm{P} \neq 0$, then $\operatorname{diam}(\mathrm{Z}((\Gamma(\mathrm{R}(+) \mathrm{M})))=2$.

Proof : (i) Since $Z(\Gamma(R))=\emptyset$, we must have R is an integral domain. If $\mathrm{P}=0$,
then Theorem 4.2.2 gives $Z(R(+) M)^{*}=V_{1}$, so clearly it is complete.
(ii) If $P \neq 0$, and $Z(R)$ is not an ideal of R then Theorem 4.2.2 gives $\quad Z(R(+) M)^{*}=V_{1} \cup V_{2}$.
Let $\mathrm{z}_{1}=(\mathrm{a}, \mathrm{m}), \mathrm{z}_{2}=(\mathrm{b}, \mathrm{n}) \in \mathrm{Z}(\mathrm{R}(+) \mathrm{M})^{*}$. If $\mathrm{z}_{1}, \mathrm{z}_{2} \in \mathrm{~V}_{1}$, then $\mathrm{Z}_{1}+\mathrm{Z}_{2} \in \mathrm{Z}(\mathrm{R}(+) \mathrm{M})^{*}$.

If $z_{1} \in V_{2}$ and $z_{2} \in V_{1}$, then $a \in P$ and $b=0 ; z_{1}+z_{2}=$ $(a+b, m+n)$ for some $(c, l) \in R(+) M$
we have $(a+b, m+n) .(c, l)=(a c+b c, a l+b l+m c+n c)$
if $\mathrm{c}=0$ then $(\mathrm{a}+\mathrm{b}, \mathrm{m}+\mathrm{n})$. $(\mathrm{c}, \mathrm{l})=0$ so $\mathrm{z}_{1}+\mathrm{z}_{2}=$ $(a+b, m+n) \in Z(R(+) M)^{*}$.
If $c \neq 0$ and $a \in Z(R)$ then $a c=0$ for some $c \in P \subseteq R$
Since $c \in P$ then $m c+n c=0$ so $\mathrm{z}_{1}+\mathrm{Z}_{2}=(\mathrm{a}+\mathrm{b}, \mathrm{m}+\mathrm{n}) \in$ $\mathrm{Z}(\mathrm{R}(+) \mathrm{M})^{*}$.
If $c \notin P$ and let $m=-n$ then $(a+b, m+n) .(c, l)=(a c$, $\mathrm{mc}+\mathrm{nc})=(0,0)$ then $\quad \mathrm{Z}_{1}+\mathrm{Z}_{2} \in \mathrm{Z}(\mathrm{R}(+) \mathrm{M})^{*}$.
Similarly, if $z_{1} \in V_{1}$ and $z_{2} \in V_{2}$, then $z_{1}+z_{2} \in$ $\mathrm{Z}(\mathrm{R}(+) \mathrm{M})^{*}$.
Suppose that $Z_{1}, z_{2} \in V_{2}$ and let $0 \neq x \in M$ then $a, b \in P$ $=(0: M)$
Hence $z_{1}-(0, x)-z_{2}$ is a path.
Since $(a, m)+(0, x) \in Z(R(+) M)^{*}$ and $(0, x)+(b, n) \in$ $\mathrm{Z}(\mathrm{R}(+) \mathrm{M})^{*}$.
Because $(a, m)+(0, x)=(a, m+x)$ for $(c, l) \in R(+) M$
$(\mathrm{a}, \mathrm{m}+\mathrm{x}) .(\mathrm{c}, \mathrm{l})=(\mathrm{ac}, \mathrm{al}+\mathrm{mc}+\mathrm{xc})$
If $c=0, a \in P \Rightarrow(a, m+x) .(c, l)=0$
If $c \neq 0, c \in P \subseteq R, a \in P \Rightarrow m c+x c=0, a c=0 \Rightarrow(a, m+x)$. (c,l) $=0$

If $\mathrm{c} \notin \mathrm{P}$ and let $\mathrm{m}=-\mathrm{x}$ then $\mathrm{mc}+\mathrm{xc}=0 \Rightarrow$ $(\mathrm{a}, \mathrm{m}+\mathrm{x}) .(\mathrm{c}, \mathrm{l})=0$
Hence $(a, m)+(0, x) \in Z(R(+) M)^{*}$ and similarly $(0, x)$ $+(b, n) \in Z(R(+) M)^{*}$.
So $\mathrm{Z}_{1}-(0, \mathrm{x})-\mathrm{Z}_{2}$ is a path in $\mathrm{Z}((\Gamma(R(+) M))$.
Hence diam $(Z((\Gamma(R(+) M)))=2$.
Theorem 4.2.6 Let M be a P-prime module over a commutative ring R and let $Z(\Gamma(R))=\varnothing$. Then $\operatorname{diam}(Z((\Gamma(R(+) M)))) \leq 2$.
Proof. This follows from theorem 4.2.5.
Example 4.2.7 (i) Since Z is a 0 -prime Z -module, we must have $Z(\Gamma(R(+) M))$ is complete by Theorem4. 2.5 (i).
(ii) Let $\mathrm{M}=\mathrm{Z}_{3}$ denote the ring of integers modulo 3. Then M is a $3 Z$-prime Z-module.

Then diam $\mathrm{Z}((\Gamma(\mathrm{R}(+) \mathrm{M})))=2$ by Theorem 4.2 .5 (ii)
Lemma 4.2.8 Let R be a commutative ring with identity and $\mathrm{M} \cong \mathrm{Z}_{3}$ a P -prime R -module. Then:
(i) $\mathrm{P} \neq 0$ if and only if $|\mathrm{R}|>3$.
(ii) $\mathrm{P}=0$ if and only if $|\mathrm{R}|=3$.

Proof. (i) Since $\mathrm{P} \neq 0$ and it is prime, we must have $|P| \geq 3$; hence $|R| \geq 4$.
Conversely, assume that $|R| \geq 4$, so by [2, p. 237], there always exists a
non-zero $\mathrm{r} \in \mathrm{R}$ such that $\mathrm{rZ}{ }_{3}=0$. Therefore, $\mathrm{P} \neq 0$.
(ii) is clear.

Theorem 4.2.9. Let R be a commutative ring and let M be a P-Prime module
(i) $|\mathrm{P}|=0[\mathrm{P}=\varnothing]$ then $\operatorname{diam} \mathrm{Z}((\Gamma(\mathrm{R}(+) \mathrm{M})))=1$.
(ii) $|\mathrm{P}| \geq 1$ then $\operatorname{diam} \mathrm{Z}((\Gamma(\mathrm{R}(+) \mathrm{M})))=2$.

Proof: (i) if $|\mathrm{P}|=0[\mathrm{P}=\varnothing]$
i.e. there is no element $r \in R^{*}$ such that $r m=0$ for any $m \in \mathrm{M}^{*}$.
then theorem 4.2.2 gives $\mathrm{Z}(\mathrm{R}(+) \mathrm{M})^{*}=\mathrm{V}_{1}$
then for any two elements in V_{1} are distance 1.
$\operatorname{diam} Z((\Gamma(\mathrm{R}(+) \mathrm{M})))=1$.
(ii) if $|\mathrm{P}| \geq 1$
i.e. there exist at least one element $\mathrm{m} \in \mathrm{M}^{*}$ such that $\mathrm{rm}=0$ for any $\mathrm{r} \in \mathrm{R}$.
then $\mathrm{Z}(\mathrm{R}(+) \mathrm{M})^{*}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{(0, \mathrm{~m}): \mathrm{m} \in \mathrm{M}^{*}\right\} \cup$ $\left\{(\mathrm{r}, \mathrm{m}), \ldots \ldots: \mathrm{m} \in \mathrm{M}^{*}\right\}$
then any two elements of V_{2} are not adjacent. But $(\mathrm{r}, \mathrm{n})+(0, \mathrm{~m}) \in \mathrm{Z}(\mathrm{R}(+) \mathrm{M})^{*}$ and $(0, \mathrm{~m})+(0, \mathrm{n}) \in$ $\mathrm{Z}(\mathrm{R}(+) \mathrm{M})^{*}$. Then $(\mathrm{r}, \mathrm{n})-(0, \mathrm{~m})-(0, \mathrm{n}), \mathrm{m} \neq \mathrm{n}$ and $\mathrm{m}, \mathrm{n} \in \mathrm{M}^{*}$ is a path in $\mathrm{Z}((\Gamma(\mathrm{R}(+) \mathrm{M})))$.
Then $\operatorname{diam} Z((\Gamma(R(+) M)))=2$.

4. References:

[1]. I.Beck, Coloring of commutative rings, J.Algebra 116(1988),208-226.
[2]. D.D.Anderson,M.Naseer, Becks coloring of a commutative ring, J.Algebra,159(1993), 500-514.
[3].D.F. Anderson,P.S.Livingston, The zero divisor graph of a commutative ring J.Algebra, 217(1999),434-447.
[4]. D.F. Anderson, A.Frazier,A.Lauve, P.Livingston ,The zero divisor graph of a commutative ring II, Lecture Notes in Pure and Appl.Math.,vol.220,Dekker,New York,2001,61-72.
[5]. D.F. Anderson,A.Badawi, The total graph of commutative ring, J.Algebra,.320, 2706-2719,(2008)
[6]. F.R.DEMEYER,T.McKenzie and K.Schneider,the zero divisor graph of a commutative semigroup. Semigroup Forum,vol.65(2002),206-214.
[7]. D.F. Anderson, A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008) 3073-3092.
[8]. D.F. Anderson, R. Levy, J. Shapiro, Zerodivisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (2003) 221-241.
[9] D.F. Anderson, S.B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210 (2007) 543-550.
[10] M. Axtel, J. Coykendall, J. Stickles, Zerodivisor graphs of polynomials and power series
over commutative rings, Comm. Algebra 33 (2005) 2043-2050.
[11] M. Axtel, J. Stickles, Zero-divisor graphs of idealizations, J. Pure Appl. Algebra 204 (2006) 235-243.
[12] I. Kaplansky, Commutative Rings, rev. ed., University of Chicago Press, Chicago, 1974.
[13] J.D. LaGrange, Complemented zero-divisor graphs and Boolean rings, J. Algebra 315 (2007) 600-611.
[14] T.G. Lucas, The diameter of a zero-divisor graph, J. Algebra 301 (2006) 174-193.
[15] S. Akbari, A. Mohammadian, On the zerodivisor graph of a commutative ring, J. Algebra 274 (2004) 847-855.
[16] S.E. Atani. and F.Farzalipour., Zero Divisor Graphs of idealizations with respect to modules". Chiang Mai J.Sci.36(1),2009,5-8.

[^0]: Research Scholar, Department of Mathematics, S.V.University, Tirupathi.
 Email: msceswar@gmail.com
 Associate Professor, Department of Mathematics, S.V.University, Tirupathi.,
 Email: bharathikavali.yahoo.co.in

