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Total Zero-Divisor Graphs of
Idealizations with Respect to
Prime Modules

D.Eswara Rao D.Bharathi

Abstract: Let R be a commutative ring with identity and let M be a prime R-module. let R(+)M be the
idealization of ring R by the R-module M. we study the diameter and girth of the Total zero divisor graph of the
ring R(+)M. In this paper we discuss the Total zero divisor graphs of idealization with respect to the prime
modules. In this, we consider R be a commutative ring and let M be a P-prime R- module and P = (0:M) then
we prove that (i) if P#£0 then (a,m) € Z(R(+)M) if and only if a € PUZ(R) (ii) if P = 0 then (a,m) € Z(R(+)M) if and
only if a =0 and m € M*. Using this result we prove that let Z(I'(R) # @, Z(R) is an ideal of R then Z(T'(R(+)M))
is complete if and only if Z(R) <(0:M). and also we prove that (i) if P = 0 then Z(I'(R(+)M)) is complete, (ii) if
P#0 and Z(R) is not an ideal of R then diam(Z(I'(R(+)M))) = 2. Also we show that if |P|=0 then
diam(Z(I'(R(+)M))) = 1,if |P|#0 then diam(Z(I'(R(+)M))) = 2.

Index Terms: Zerodivisors, Total zerodivisor graph of idealization, commutative ring, connected graph, prime

module.

1. Introduction:

Let R be a commutative Ring with non
zero unity. The concept of the graph of the zero
divisors of R was first introduced by Beck [1],
where he was mainly interested in coloring. In his
work all elements of the ring were vertices of the
graph. The investigation of colorings of a
commutative ring was then continued by D. D.
Anderson and Naseer [2], In [3], D. F. Anderson
and Livingston associate a graph, I'(R), to R with
vertices Z(R)=Z(R)\ {0}, the set of non zero zero
divisors of R, and for distinct x,y € Z(R)\{0}. The
vertices x and y are adjacent if xy=0. In [5] D.F.
Anderson and Badawi introduced the total graph
of R, denoted by T(I'(R)) as the graph with all
elements of R as vertices, and for distinct x, y € R
are adjacent if x+y € Z(R), they studied some
graphical parameters of this graph such as
diameter and girth.

we study some results of Total graphs of
idealizations with respect to prime module . In [5]
D.F.Anderson, A.Badawi studied connectedness of
Total graph of the idealization R(+)M and also
investigate diameter and has proved some results
on girth of Total graphs. Different aspects of the
idealization are thoroughly investigated in
[10],[11]. In this paper we also extend the study of
D.F.Anderson, and A.Badawi with respect to
prime module . In this section consider R be a
commutative ring and let M be a P-prime R-
module and P = (0:M) then we prove that (i) if P#0
then (a,m) € Z(R(+)M) if and only if a € PUZ(R) (ii)
if P =0 then (a,m) € Z(R(+)M) if and only if a=0
and m € M*. Using this result we prove that let
Z(I'(R) # ¢, Z(R) is an ideal of R then Z(I'(R(+)M)) is
complete if and only if Z(R) £(0:M). and also we
prove that (i) if P =0 then Z(I'(R(+)M)) is complete,
(ii) if P#0 and Z(R) is not an ideal of R then
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Complete Graph: A graph G in which every vertex
is adjacent to every other vertex is called a
complete graph. Complete graph is represented as
Kn where n is the number of vertices in K .
Connected Graph: A graph G is said to be a
connected graph if there is at least one path
between every pair of vertices in G. otherwise G is
said to be a disconnected graph.

Distance: Any two distinct vertices a and b in
graph G, the distance between a and b, denoted
by d(a,b) is the length of a shortest path connecting
a and b,if such a path exist. Otherwise d(G) =<0
Diameter of G : diam(G) = Sup{d(x,y) / x & y are
distinct vertices in G},where d(x,y) is the length of
shortest path from x to y in G. if there is no such a
path then d(x,y) = c.

The girth of G: The girth of G is denoted by gr(G)
is length of shortest cycle in G. if G contains no
cycles the gr(G) = c.

Path: A trail in which all the vertices are distinct is
called a path.

Cycle: A path whose origin and terminus vertices
are the same is called a cycle.

The idealization of M over R:
The idealization of M over R is the commutative
ring formed from RXM by defining addition and
multiplication as follows

1) (r1,ma)+(r2,m2)=(r1+r2,mi+mz);

(i)  (ri,ma)(re,mz)=(rirz,rimztramn).

The idealization of M in R, denoted by R(+)M, We
will assume that neither the ring nor the module is

trivial. Observe that
if acZ(R)', then (a,m)eZ(R(+)M)for all meM. To see
this, consider beZ(R)" with ab=0.

If bM=0, then (a,m)(b,0)=0. If bM#0, then there exists
some neM such that bn#0. Hence, (a,1)(0,bn)=0.

3. Main Results:

Let M be a P-prime module over a
Commutative ring R. Vi={(0, m) : m € M*}, V2=
{(a,n):a €P*neM}and Vs={(a n):a€Z*R), n
€ M} are used in this section.

Theorem4.2.1 Let R be a commutative ring and let
M be a P-prime R-module. Then

(i) If P #0, then (a, m) € Z(R(+)M) if and only if a €
P UZ(R).

(ii) If P =0, then (a, m) € Z(R(+)M) if and only if a =
0 and m € M*.

Proof. (i) Let (a, m) € Z(R(+)M)). We may assume
thata#0.

There exist a non-zero element (b, n) of R(+)M such
that (a, m)(b, n)=(ab, an +
bm) =(0,0).

Ifb=0,thena€ (0:n)=P;if b#0, then a € Z(R).
Conversely, assume that (a, m) € R(+)M witha € P
UZ(R).

If a € Z(R), then ab=0

for some non-zero element b € R. If b € P, then (a,
m)(b,0)=(0,0). If b & P,

then there is an element x of M such that bx # 0.
Then (a, m)(0, bx) = (0,0).

Finally, if a € P, then there exists a non-zero
element y of M such that ay = 0.

Therefore, (a, m)(0, y) = (0,0), and so the case.

(ii) Let (a, m) € Z(R(+)M)). We may assume that a #
0.

There exist a non-zero element (b, n) of R(+)M
such that ab = 0 and an+bm = 0.

Since M is a 0-prime R-module, we must have R is
an integral domain;

hence if a# 0, thenb=0,n#0anda€ (0:n)=0
which is a contradiction.

Therefore, a =0 and m # 0 since (a, m) # 0.

The other implication is clear.
*

Theorem4.2.2 Let R be a commutative ring and let
M be a P-prime R-module. Then

(i) If P =0, then Z(R(+)M)*= V1.

(i) If P # 0 and ZR)*# @, then ZR(+)M)*=
ViuV2UVs.

(iii) If P # 0 and Z(R)*= @, then Z(R(+)M)*= V1iUV2.
Proof. This follows from theorem 4.2.1.

Theorem 4.2.3 Let M be a prime module over a
commutative ring R and let Z(I'(R)) # @. Then
Z(I'(R(+)M)) is complete if and only if Z(R) € (0
:M).

Proof. Since Z(T'(R)) # @, we must have (0: M) =P #
0.

Assume Z(I'(R(+)M)) is complete.

Let r € Z(R), 0 # m € M. We may assume that r #0.
Then

Theorem 4.2.2 gives (0, m),(r,0) € Z(R(+)M)*
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Hence (0, m)+(r,0) € ZRH*HM)* = (rm) €
Z(R(+)M)* [ by the hyp.]

Then for some (b,n) € R(+)M we have (r,m). (b,n) =
0 =(rb, rn+bm) =0

=
rb =0 and rn+bm =0
If b
=0=>rm=0=r€0:M)
=
Z(R)  (OM)
If b#0=and rb =0 ,b is a zero divisor, i.e. be
Z(R).

For some meM c R we have bm = 0 this gives rn
=0=>re(OM)= Z(R) < (0:M).

Conversely assume that Z(R) < (0:M) =P.

Let (am),(bn) € ZRH*HM)* and (a,m)+(bn)
(at+b,m+n)

For some (c,l)e R(+)M we have (a+b,m+n). (c1l)
(actbc, al+bl+mc+nc)

If a=b=c=0 then clearly (a+b,m+n). (c,1) =0.

If ¢c=0and abe Z(R)* P then al = 0,bl = 0. hence
(at+b,m+n). (c,1) = 0.

If a,b,ce Z(R)* < P then ac = 0,bc = 0,and al = 0,bl =
0,mc =0, nc=0 then
(at+b,m+n). (c,1) = 0.
So for all cases

(am)+(b,n) = (atb,m+n) €

ZRHM)*
Thus ZTRH+M)) is complete.
.

Note that if M is a prime R-module, then any non-
zero sub module of M is prime. Therefore, by
Theorem 4.2.3, we have the following corollary:
Corollary4. 2.4 Let R be a commutative ring, M a
prime R-module, N a nonzero sub module of M
and Z( I'(R))# @. Then Z(I'(R(+)M)) is complete if
and only if Z(I'(R(+)N)) is complete.

Theorem4.2.5 : Let M be a P-prime module over a
commutative ring R and let Z(I'(R)) = @. Then:

(i) If P =0, then Z( I'(R(+)M)) is complete.

(ii) It P# 0, then diam (Z(T'(R(+)M))) =2.

Proof : (i) Since Z(I'(R)) = @, we must have R is an
integral domain. If P=0,

then Theorem 4.2.2 gives Z(R(+)M)* = Vi, so
clearly it is complete.

(i) If P # 0,and Z(R) is not an ideal of R then
Theorem 4.2.2 gives ~ Z(R(+)M)*= ViU V2.

Let z1=(a, m), z2= (b, n) € ZR(+H)M)*. If z1, z2€ Vi,
then z1 + z2 € Z(R(+)M)*.

If z1€ V2aand z2€ Vi, thena € P and b =0; z1 + z2=
(atb,m+n) for some (cl)e R(+)M
we have (a+b,m+n). (¢,1) = (actbc, al+bl+mc+nc)
if ¢ = 0 then (atb,m+n). (cl) = 0 so z1 + z2 =
(atb,m+n) € Z(R(+)M)*.
Ifc#20and ae Z(R) then ac=0 for some ceP =R
Since ceP then mc+nc = 0 so z1 + z2 = (a+tb,m+n) €
Z(R(+)M)*.
If c¢P and let m = -n then (a+b,m+n). (¢1) = (ac,
mc+nc) = (0,0) then z1+ 22 € ZR(+HM)*.
Similarly, if z1€ Vi and z2€ V2, then z1 + z2 €
Z(R(+)M)*.
Suppose that z1, z:€ V2 and let 0 # xeM then a,beP
= (0:M)
Hence z1 - (0,x) - z2 is a path.
Since (a,m) + (0,x) € Z(R(+)M)* and (0,x) + (b,n) €
Z(R(+)M)*.
Because (a,m) + (0,x) = (a,m+x) for (c]l)e R(+)M
(a,m+x). (¢,1) = (ac, al+mc+xc)
Ifc=0,aeP = (am+x). (c1)=0
If ¢ # 0,ceP < R,aeP = mc+xc = 0,ac = 0 = (a,m+x).
(ch=0

If c¢P and let m = -x then mc+xc = 0=
(a,m+x). (c,1)=0
Hence (a,m) + (0,x) € Z(R(+)M)* and similarly (0,x)
+ (b,n) € Z(R(+)M)*.
So z1 - (0,x) - z2 is a path in Z((T'(R(+)M)).
Hence diam (Z(T(R(+)M))) =2. ¢
Theorem 4.2.6 Let M be a P-prime module over a
commutative ring R and let Z(I'(R)) = @. Then
diam (Z((T(R(+)M)))) < 2.
Proof. This follows from theorem 4.2.5.
Example 4.2.7 (i) Since Z is a 0-prime Z-module,
we must have Z(['(R(+)M)) is complete by
Theorem4. 2.5 (i).
(ii) Let M = Zs denote the ring of integers modulo
3. Then M is a 3Z-prime Z-module.
Then diam Z((I'(R(+)M))) = 2 by Theorem 4.2.5 (ii)
Lemma 4.2.8 Let R be a commutative ring with
identity and M = Zs a P-prime R-module. Then:
(i) P #0if and only if IRI >3.
(ii) P=0if and only if IRI =3.
Proof. (i) Since P # 0 and it is prime, we must have
IP| >3; hence IRI >4.
Conversely, assume that IR| >4, so by [2, p. 237],
there always exists a
non-zero r € R such that rZs= 0. Therefore, P # 0.
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(ii) is clear. .
Theorem 4.29. Let R be a commutative ring and
let M be a P-Prime module

(i) |P| =0 [P=9] then diam Z(T(R(#M))) =1 .

(ii) | P| = 1 then diam Z(T(R(+)M))) = 2.

Proof : (i) if |P| =0 [P=9]

i.e. there is no element re R* such that rm =0 for

any meM*.

then theorem 4.2.2 gives Z(R(+)M)*= V1

then for any two elements in V1 are distance 1.

diam Z((T'(R(+)M))) = 1.

() if |P|>1

i.e. there exist at least one element meM* such

that rm =0 for any reR.

then Z(R+=)M)*= ViU V2 = {(O,m): meM* } U

{(r,m),...... :meM* }

then any two elements of V: are not adjacent. But

(rn) + (O,m) € ZR*+M)* and (O,m) + (On) €

ZRH*M)*. Then (rn) - (0,m)-(0O,n), m#n and

m,neM* is a path in Z((I'(R(+)M))).

Then diam Z(T'(R(+)M))) = 2.
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